If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+40t+144=0
a = -16; b = 40; c = +144;
Δ = b2-4ac
Δ = 402-4·(-16)·144
Δ = 10816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10816}=104$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-104}{2*-16}=\frac{-144}{-32} =4+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+104}{2*-16}=\frac{64}{-32} =-2 $
| -83=-3(5x+3)+1 | | -130=5(3k-5) | | 3(2x-5)+5=(3x+6) | | 1(4)+4(5)=(1+4)x | | 4x-4-6=-6 | | 80=(10x+6)=(4x+4) | | 5^{4x=6}=17 | | 3x-9+4x-20=180 | | H(t)=-16t^2+19.4 | | 46=-4x+2 | | (1/(x^2))-5x=((x+7)/x)-1 | | x2−8=−2x | | O.6(d+3)=3d | | 30/y+4=10 | | 25x+36=-114 | | 2v+v-17=(v-1) | | 4x(9)=73 | | 11x+4=12x-3 | | 5x-20x^7=0 | | 4(2x-5)+5=(3x+6) | | Y=3t+6 | | 5b-1=-46 | | (7x÷5)-1=8 | | -6x^3+5x+x^5=0 | | 7x/5-1=8 | | -6x^3+5x+x^3=0 | | 18s^2+72=0 | | 3^w*2^4w=12 | | 24=xx48 | | Y³+y²-2y=0 | | Y+y-2y=0 | | 42y=78 |